Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping

PLoS One. 2014 Oct 23;9(10):e111040. doi: 10.1371/journal.pone.0111040. eCollection 2014.

Abstract

Soil sickness is a critical problem for eggplant (Solanum melongena L.) under continuous cropping that affects sustainable eggplant production. Relay intercropping is a significant technique on promoting soil quality, improving eco-environment, and raising output. Field experiments were conducted from September 2010 to November 2012 in northwest China to determine the effects of relay intercropping eggplant with garlic (Allium sativum L.) on soil enzyme activities, available nutrient contents, and pH value under a plastic tunnel. Three treatments were in triplicate using randomized block design: eggplant monoculture (CK), eggplant relay intercropping with normal garlic (NG) and eggplant relay intercropping with green garlic (GG). The major results are as follows: (1) the activities of soil invertase, urease, and alkaline phosphatase were generally enhanced in NG and GG treatments; (2) relay intercropping significantly increased the soil available nutrient contents, and they were mostly higher in GG than NG. On April 11, 2011, the eggplant/garlic co-growth stage, the available nitrogen content in GG was 76.30 mg·kg(-1), significantly higher than 61.95 mg·kg(-1) in NG. For available potassium on April 17, 2012, they were 398.48 and 387.97 mg·kg(-1) in NG and GG, both were significantly higher than 314.84 mg·kg(-1) in CK; (3) the soil pH showed a significantly higher level in NG treatment, but lower in GG treatment compared with CK. For the last samples in 2012, soil pH in NG and GG were 7.70 and 7.46, the highest and lowest one among them; (4) the alkaline phosphatase activity and pH displayed a similar decreasing trend with continuous cropping. These findings indicate that relay intercropping eggplant with garlic could be an ideal farming system to effectively improve soil nutrient content, increase soil fertility, and alleviate soil sickness to some extent. These findings are important in helping to develop sustainable eggplant production.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agriculture / methods*
  • China
  • Crops, Agricultural
  • Fertilizers
  • Garlic
  • Hydrogen-Ion Concentration
  • Soil / chemistry*
  • Soil Microbiology
  • Solanum melongena
  • Temperature

Substances

  • Fertilizers
  • Soil

Grants and funding

This research was supported by a project of the National Natural Science Foundation of China (No. 31171949), the Special Fund for Agro-scientific Research in the Public Interest (No. 200903018), and the University Undergraduates Innovating Experimentation Project (No. 2201110712036). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.