Replication of flexible polymer membranes with geometry-controllable nano-apertures via a hierarchical mould-based dewetting

Nat Commun. 2014:5:3137. doi: 10.1038/ncomms4137.

Abstract

Membranes with nano-apertures are versatile templates that possess a wide range of electronic, optical and biomedical applications. However, such membranes have been limited to silicon-based inorganic materials to utilize standard semiconductor processes. Here we report a new type of flexible and free-standing polymeric membrane with nano-apertures by exploiting high-wettability difference and geometrical reinforcement via multiscale, multilevel architecture. In the method, polymeric membranes with various pore sizes (50-800 nm) and shapes (dots, lines) are fabricated by a hierarchical mould-based dewetting of ultraviolet-curable resins. In particular, the nano-pores are monolithically integrated on a two-level hierarchical supporting layer, allowing for the rapid (<5 min) and robust formation of multiscale and multilevel nano-apertures over large areas (2 × 2 cm(2)).

Publication types

  • Research Support, Non-U.S. Gov't