Four novel p.N385K, p.V36A, c.1033-1034insT and c.1417-1418delCT mutations in the sphingomyelin Phosphodiesterase 1 (SMPD1) gene in patients with types A and B Niemann-Pick disease (NPD)

Int J Mol Sci. 2015 Mar 24;16(4):6668-76. doi: 10.3390/ijms16046668.

Abstract

Background: Types A and B Niemann-Pick disease (NPD) are autosomal-recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene.

Methods: In order to determine the prevalence and distribution of SMPD1 gene mutations, the genomic DNA of 15 unrelated Iranian patients with types A and B NPD was examined using PCR, DNA sequencing and bioinformatics analysis.

Results: Of 8 patients with the p.G508R mutation, 5 patients were homozygous, while the other 3 were heterozygous. One patient was heterozygous for both the p.N385K and p.G508R mutations. Another patient was heterozygous for both the p.A487V and p.G508R mutations. Two patients (one homozygous and one heterozygous) showed the p.V36A mutation. One patient was homozygous for the c.1033-1034insT mutation. One patient was homozygous for the c.573delT mutation, and 1 patient was homozygous for the c.1417-1418delCT mutation. Additionally, bioinformatics analysis indicated that two new p.V36A and p.N385K mutations decreased the acid sphingomyelinase (ASM) protein stability, which might be evidence to suggest the pathogenicity of these mutations.

Conclusion: with detection of these new mutations, the genotypic spectrum of types A and B NPD is extended, facilitating the definition of disease-related mutations. However, more research is essential to confirm the pathogenic effect of these mutations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Genetic Association Studies / methods
  • Humans
  • Iran
  • Mutation*
  • Niemann-Pick Disease, Type A / genetics*
  • Niemann-Pick Disease, Type B / genetics*
  • Sequence Analysis, DNA / methods
  • Sphingomyelin Phosphodiesterase / genetics*
  • White People / genetics

Substances

  • SMPD1 protein, human
  • Sphingomyelin Phosphodiesterase