Dehydrogenation reaction for Na-O-H system: a first-principles study

Chemphyschem. 2007 Sep 17;8(13):1979-87. doi: 10.1002/cphc.200700403.

Abstract

The crystal structures, electronic, dielectric, and vibrational properties of NaH, Na(2)O and NaOH are systematically investigated by first-principles calculations and the quasiharmonic approximation. The phonon dispersion relations and the phonon density of states of the phases and their thermodynamic functions including the heat capacity, the vibrational enthalpy, and the vibrational entropy are calculated using a direct force-constant method. Based on these results, the dehydrogenation reaction, NaH+NaOH-->H(2)+Na(2)O, is predicted to take place at 528 K, which is in agreement with the experimental observed value.