Deep insights into fungal diversity in traditional Chinese sour soup by Illumina MiSeq sequencing

Food Res Int. 2020 Nov:137:109439. doi: 10.1016/j.foodres.2020.109439. Epub 2020 Jun 15.

Abstract

Sour soup is a traditional condiment in Guizhou Province, China. The purpose of this study was to investigate the differences in the fungi present in 5 types of sour soup (tomato sour soup, chili sour soup, cherry tomato sour soup, spoiled tomato sour soup, and red sour soup made from blended tomato and chili sour soup subjected to secondary fermentation) and to determine the reasons for the deterioration of tomato sour soup by comparing the fungal communities in normal and deterioratedtomato sour soup. A total of 5 phyla were detected in all 5 samples, including Ascomycota (69.38%), Basidiomycota (7.63%), Zygomycota (1.59%), Chytridiomycota (0.01%) and unclassified phyla (21.39%). Ascomycota was the main phylum in each sample except the red sour soup made from blended tomato and chili sour soup subjected to secondary fermentation. That sour soup contained many unrecognized phyla. At the genus level, there were major differences among the different samples. Dekkera spp. and Pichia spp. were the main dominant fungus in tomato sour soup, Saccharomyces spp. and Pichia spp. were the dominant fungus in chili sour soup, and Pichia spp. were the dominant fungus in cherry tomato sour soup. When sour soup went bad, the fungus of sour soup changed greatly, and the unknown fungal genera, Cladospora spp., Saccharomyces spp. and Emericella spp. became the dominant fungal genera. In addition, after the secondary fermentation of tomato and chili sour soup mixed with garlic and ginger, the fungal genera of the base fermentation were replaced by unknown fungal genera. Moreover, there were various spoilage fungi in sour soup, which indicated that there were safety risks in naturally fermented sour soup and should be further controlled. This study revealed the fungal flora in sour soup made from different vegetables and compared the fungal diversity of spoiled and normal tomato sour soup and thereby provided a basis for understanding the fungal diversity of sour soup in China and guiding the production of sour soup.

Keywords: Chinese traditional condiment; Deterioration; Food safety; Fungal diversity; High-throughput Illumina sequencing; Sour soup.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ascomycota*
  • China
  • Fermentation
  • High-Throughput Nucleotide Sequencing
  • Mycobiome*