Synthesis of Diblock Polyampholyte PAMPS-b-PMAPTAC and Its Adsorption on Bentonite

Polymers (Basel). 2018 Dec 30;11(1):49. doi: 10.3390/polym11010049.

Abstract

To study the adsorption of polyampholyte on bentonite (Bent), a block polyampholyte, PAMPS-b-PMAPTAC, comprised of 2-Acrylamido-2-Methylpropane Sulfonic Acid (AMPS) units and Methacrylamido Propyl Trimethyl Ammonium Chloride (MAPTAC) units, was synthesized using reversible addition-fragmentation chain transfer polymerization (RAFT) method. The block polyampholyte samples were characterized by FTIR, ¹H NMR and Gel Permeation Chromatography (GPC). The microstructure of block polyampholyte and random polyampholyte in deionized water indicated that uneven distribution of charged groups increased the entanglement of polymer chains. Addition of salt weakened the electrostatic interactions among charged groups, and, therefore, increased the zeta potential of polyampholyte in aqueous solutions. The adsorptive behaviors of PAMPS-b-PMAPTAC on Bent were studied using elemental analysis, and the effects of external factors were considered. The adsorption equilibrium of polymers on Bent was reached after 12 h. Increased temperature and increased salinity exerted a positive and negative effect on the adsorption of polyampholyte, respectively. The molecular weight played as the decisive factor for the adsorption of polyampholyte in the absence of NaCl, while the content of cationic groups acted as the main factor in the presence of NaCl. Block polyampholyte exhibited higher adsorption than random polyampholyte in the absence of salt. XRD results also indicated that block polyampholyte had a better intercalation effect than random polyampholyte.

Keywords: AMPS; MAPTAC; adsorption; bentonite; block polyampholyte.