An Analytical Model for Describing the Power Coupling Ratio between Multimode Fibers with Transverse Displacement and Angular Misalignment in an Optical Fiber Bend Sensor

Sensors (Basel). 2019 Nov 14;19(22):4968. doi: 10.3390/s19224968.

Abstract

The power coupling ratio between step-index multimode fibers caused by combined transversal and angular misalignment is calculated. A theoretical description of the coupling efficiency between two optical fibers based on geometrical optics is provided. The theoretical calculations are collaborated by experiments, determining the power coupling ratio between three output fibers with an axial offset and angular misalignment with a single input fiber. The calculation results are in good agreement with experimental results obtained using a previously fabricated optical fiber sensor for monitoring physiological parameters in clinical environments. The theoretical results are particularly beneficial for optimizing the design of optical fiber bending sensors that are based on power coupling loss (intensity) as the measurement interrogation requires either axial displacement, angular misalignment, or both.

Keywords: angular misalignment; axial displacement; fiber optic sensor; geometrical optics; optical coupling efficiency.

Grants and funding