Effect of Thermal Treatment of Veneer on Formaldehyde Emission of Poplar Plywood

Materials (Basel). 2013 Jan 30;6(2):410-420. doi: 10.3390/ma6020410.

Abstract

A large amount of poplar plywood is now being imported into Japan from China, and as a result, formaldehyde emitted from this plywood represents an undesirable chemical that must be controlled using a chemical catching agent. The aim of this study is to find an approach to reduce the formaldehyde emission of poplar plywood using thermal treatment without employing any chemicals. The experimental results obtained show that heating veneer sheets in the temperature range of 150 °C to 170 °C effectively reduced the formaldehyde emission of plywood, without diminishing the mechanical properties of the veneer. By applying Langmuir's theory and Hailwood-Horrobin theory to the adsorption isotherm obtained in this study, the relationship between the formaldehyde emission of plywood and the adsorption properties of veneer as a material is discussed. When veneer sheets were heated in the temperature range of 150 °C to 170 °C, the amount of hydrated water (monomolecular layer) decreased slightly and that of dissolved water (polymolecular layer) did not change. It is hypothesized that the formaldehyde emission of plywood is related to the condition of the adsorption site of the wood.

Keywords: Hailwood-Horrobin theory; Langmuir’s theory; formaldehyde emission; poplar plywood; thermal treatment.