Processing and Mechanical Properties of Ti2AlC MAX Phase Reinforced AE44 Magnesium Composite

Materials (Basel). 2020 Feb 23;13(4):995. doi: 10.3390/ma13040995.

Abstract

AE44 alloys and nanolaminated Ti2AlC particle-reinforced AE44 magnesium composites were synthesized by stir casting techniques and textured by hot extrusion methods. It was found that lamellar Al11RE3 precipitates spheroidized with the introduction of Ti2AlC into the AE44 matrix. Both transmission electron microscope and planar disregistries calculations reveal a good match for interfacial lattice transition between Mg (0001) and the basal plane (0001) of Ti2AlC. This suggests that Ti2AlC is an efficient potent nucleating substrate for Mg, thus fertilizing the formation of strong interfacial bonds. After hot extrusion treatment, Ti2AlC particles were reoriented in the textured magnesium matrix, as confirmed by X-ray diffraction. This texture effect on the composite's mechanical properties was carefully studied by tensile and compressive tests.

Keywords: AE44 alloy; Ti2AlC MAX phases; anisotropic.