A remote sensing study of spatiotemporal variations in drought conditions in northern Asir, Saudi Arabia

Environ Monit Assess. 2020 Nov 25;192(12):784. doi: 10.1007/s10661-020-08771-8.

Abstract

Changes in vegetation land cover are influenced by, and therefore an indicator of, climatic conditions. The aim of this study is to investigate the relationship between vegetation cover changes and drought events in a small-scale area. Six Landsat images during 1987-2019 were used to extract information about the vegetation land cover changes using the normalized difference vegetation index (NDVI) and the fractional vegetation cover (FVC) in Balqarn Governorate in the northern mountains of Asir, Saudi Arabia. Two climatic parameters, temperature and precipitation, were used as time series for the same period and were decomposed to investigate the seasonal and trend changes for each parameter. The two parameters were also used to calculate the standardized precipitation evapotranspiration index (SPEI) to conduct an in-depth analysis of the drought events influencing vegetation cover. The results showed that the state of the vegetation coverage of the study area remained at a medium level with an average NDVI value, but the FVC values showed evidence of dynamic variability associated with drought and moisture events. The SPEI showed that the study area has been undergoing a long-duration drought event since 2004, ranging from light to severe drought, which was consistent with the time series decomposition results. This investigation has revealed that drought drives changes in vegetation cover and is expressed on small geographic scales as changes in the vegetation cover structure. The framework described here is simple and can be used to evaluate and manage drought risks.

Keywords: Drought; FVC; NDVI; SPEI; Seasonal-trend decomposition; Vegetation dynamics.

MeSH terms

  • Droughts*
  • Environmental Monitoring
  • Remote Sensing Technology*
  • Saudi Arabia
  • Temperature