A Simple, Low-Cost Micro-Coating Method for Accuracy Improvement and Its Application in Pressure Sensors

Sensors (Basel). 2019 Oct 22;19(20):4601. doi: 10.3390/s19204601.

Abstract

The demand for high-accuracy pressure sensors has increased with the advancement of technology in a wide variety of applications. However, it is generally difficult and expensive to improve the accuracy of the pressure sensor because it usually depends on the sensing principle and the internal physical structure of the pressure sensor, varying with its material and production process. Thus, a simple, low-cost, and generally applied post-processing method is proposed to improve the accuracy of pressure sensors. In this method, a micro-coating is cladded on the surface of the sensor, which effectively isolates the adverse effect of the external environment, similar to applying a "micro-protective clothing" on the pressure sensor. Experiments on seven pressure sensors are conducted, in which the micron-thin parylene polymer is utilized as the surface-deposited coating layer to demonstrate the improvement of accuracy. Results show that the accuracy was improved, with an average increase of approximately 62.54% than before cladding, while the sensitivity was almost unchanged. The principle of improving the accuracy of this method was also analyzed. The proposed simple, efficient, and low-cost method of cladding micro-coating for enhancing the accuracy of sensors can be widely applied in various fields of industrial automatic control.

Keywords: accuracy improvement; micro-coatings; post-processing methods; pressure sensors; protective barrier.