The Effect of Extender Particle Size on the Glass Transition Temperature of Model Epoxy Coatings

Polymers (Basel). 2020 Jan 12;12(1):196. doi: 10.3390/polym12010196.

Abstract

Inorganic extenders are important constituents of 2K thermosetting epoxy-amine coatings and their physical properties play an important role in the final properties of the organic coatings. The effects of extender particle size and loading (i.e., the amount of extender in component A or in the total formulation) on the glass transition temperature (Tg) of model epoxy-amine coatings were studied in this work with differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The obtained results show that the particle size and loading of feldspar particles (from 25 wt% to 70 wt%) do not influence the glass transition temperature of the model epoxy-amine coating significantly. In general, the smaller the particle size the lower the glass transition temperature of the coating but this depression in Tg seems negligible when seen relative to the change in extender particle size. Similar observations are reported for two model coatings having the same lamda (Λ) value but with silica of very different particle sizes (i.e., nanosilica and micron sized silica).

Keywords: epoxy-amine coating; feldspar; glass transition temperature; inorganic extender; nanosilica.