Design of an affordable IoT open-source robot arm for online teaching of robotics courses during the pandemic contingency

HardwareX. 2020 Nov 13:8:e00158. doi: 10.1016/j.ohx.2020.e00158. eCollection 2020 Oct.

Abstract

This article explains the design and construction of an affordable, open-source robot arm for online teaching of robotics courses. The main goal of the proposed robotic prototype is to deal with the current situation of pandemic contingency, where students and instructors cannot attend laboratory facilities in person. The robotic system has four main components: an electromechanical robot arm structure, a control system, a Wi-Fi communications module, and a human-machine interface. The IoT (Internet of Things) robot arm can be used to demonstrate important robotics topics such as direct and inverse kinematics, which are shown by programming simple and complex motions using the Denavit-Hartenberg (DH) methodology. The capabilities of the robotic system are empowered by IoT technology, which is demonstrated with an HMI interface deployed in a smartphone using wireless Wi-Fi communication through an ESP32 microcontroller. The arm's purpose is to be a low-cost and replicable robot that aids the comprehension of robotics design through project-based learning, from the theoretical aspects to the actual coding and construction of a prototype.

Keywords: Educational innovation; Higher education; Online teaching; Robot kinematics; Teaching robotics; Virtual laboratory.