Field-Based Calibration of Unmanned Aerial Vehicle Thermal Infrared Imagery with Temperature-Controlled References

Sensors (Basel). 2020 Dec 11;20(24):7098. doi: 10.3390/s20247098.

Abstract

Accurate and reliable calibration methods are required when applying unmanned aerial vehicle (UAV)-based thermal remote sensing in precision agriculture for crop stress monitoring, irrigation planning, and harvesting. The primary objective of this study was to improve the calibration accuracies of UAV-based thermal images using temperature-controlled ground references. Two temperature-controlled ground references were installed in the field to serve as high- and low-temperature references, approximately spanning the expected range of crop surface temperatures during the growing season. Our results showed that the proposed method using temperature-controlled references was able to reduce errors due to ambient conditions from 9.29 to 1.68 °C, when tested with validation panels. There was a significant improvement in crop temperature estimation from the thermal image mosaic, as the error reduced from 14.0 °C in the un-calibrated image to 1.01 °C in the calibrated image. Furthermore, a multiple linear regression model (R2 = 0.78; p-value < 0.001; relative RMSE = 2.42%) was established to quantify soil moisture content based on canopy surface temperature and soil type, using UAV-based thermal image data and soil electrical conductivity (ECa) data as the predictor variables.

Keywords: crop surface temperature; temperature calibration; temperature-controlled ground references; thermal remote sensing; unmanned aerial vehicles.