Methodology for Preliminary Design of Buildings Using Multi-Objective Optimization Based on Performance Simulation

J Sol Energy Eng. 2019 Aug;141(4):0408011-4080112. doi: 10.1115/1.4042244. Epub 2019 Jan 8.

Abstract

Buildings' energy consumption has a great energetic and environmental impact worldwide. The architectural design has great potential to solve this problem because the building envelope exerts influence on the overall system performance, but this is a task that involves many objectives and constraints. In the last two decades, optimization studies applied to energy efficiency of buildings have helped specialists to choose the best design options. However, there is still a lack of optimization approaches applied to the design stage, which is the most influential stage for building energy efficiency over its entire life cycle. Therefore, this article presents a multi-objective optimization model to assist designers in the schematic building design, by means of the Pareto archived evolutionary strategies (PAES) algorithm with the EnergyPlus simulator coupled to evaluate the solutions. The search process is executed by a binary array where the array components evolve over the generations, together with the other building components. The methodology aims to find optimal solutions (OSs) with the lowest constructive cost associated with greater energy efficiency. In the case study, it was possible to simulate the process of using the optimization model and analyze the results in relation to: a standard building; energy consumption classification levels; passive design guidelines; usability and accuracy, proving that the tool serves as support in building design. The OSs reached an average of 50% energy savings over typical consumption, 50% reduction in CO2 operating emissions, and investment return less than 3 years in the four different weathers.

Keywords: building design; early design stage; multi-objective optimization; thermal energy simulation.

Publication types

  • Review