A storm event-based approach to TMDL development

Environ Monit Assess. 2010 Apr;163(1-4):81-94. doi: 10.1007/s10661-009-0818-8. Epub 2009 Mar 6.

Abstract

It is vitally important to define the critical condition for a receiving water body in the total maximum daily load (TMDL) development process. One of the major disadvantages of using a continuous simulation approach is that there is no guarantee that the most critical condition will be covered within the subjectively selected representative hydrologic period, which is usually several years depending on the availability of data. Another limitation of the continuous simulation approach, compared to a design storm approach, is the lack of an estimate of the risk involved. Because of the above limitations, a storm event-based critical flow-storm (CFS) approach was previously developed to explicitly address the critical condition as a combination of a prescribed stream flow and a storm event of certain magnitude, both having a certain frequency of occurrence and when combined, would create a critical condition. The CFS approach was tested successfully in a TMDL study for Muddy Creek in Virginia. The present paper reports results of a comparative study on the applicability of the CFS approach in Taiwan. The Dy-yu creek watershed in northern Taiwan differs significantly from Muddy Creek in terms of climate, hydrology, terrain, and other characteristics. Results show that the critical condition for different watersheds might be also different, and that the CFS approach could clearly define that critical condition and should be considered as an alternative method for TMDL development to a continuous simulation approach.

MeSH terms

  • Virginia
  • Water*
  • Weather*

Substances

  • Water