Biogeography of " Cyprinella lutrensis": intensive genetic sampling from the Pecos River 'melting pot' reveals a dynamic history and phylogenetic complexity

Biol J Linn Soc Lond. 2016 Feb 1;117(2):264-284. doi: 10.1111/bij.12664. Epub 2015 Sep 26.

Abstract

Thorough sampling is necessary to delineate lineage diversity for polytypic "species" such as Cyprinella lutrensis. We conducted extensive mtDNA sampling (cytochrome b and ND4) from the Pecos River, Rio Grande, and South Canadian River, New Mexico. Our study emphasized the Pecos River due to its complex geological history and potential to harbor multiple lineages. We used geometric-morphometric, morphometric, and meristic analyses to test for phenotypic divergence and combined nucDNA with mtDNA to test for cytonuclear disequilibrium and combined our sequences with published data to conduct a phylogenetic re-assessment of the entire C. lutrensis clade. We detected five co-occurring mtDNA lineages in the Pecos River, but no evidence for cytonuclear disequilibrium or phenotypic divergence. Recognized species were interspersed amongst divergent lineages of "C. lutrensis". Allopatric divergence among drainages isolated in the Late Miocene and Pliocene apparently produced several recognized species and major divisions within "C. lutrensis". Pleistocene re-expansion and subsequent re-fragmentation of a centralized lineage founded younger, divergent lineages throughout the Rio Grande basin and Edwards Plateau. There is also evidence of recent introductions to the Rio Grande, Pecos and South Canadian Rivers. Nonetheless, deeply divergent lineages have coexisted since the Pleistocene.

Keywords: allopatric speciation; cryptic diversity; lineage persistence; phylogenetic sampling; polytypic taxa; species introductions; widespread species.