Biomimetic Artificial Membrane Permeability Assay over Franz Cell Apparatus Using BCS Model Drugs

Pharmaceutics. 2020 Oct 19;12(10):988. doi: 10.3390/pharmaceutics12100988.

Abstract

A major parameter controlling the extent and rate of oral drug absorption is permeability through the lipid bilayer of intestinal epithelial cells. Here, a biomimetic artificial membrane permeability assay (Franz-PAMPA Pampa) was validated using a Franz cells apparatus. Both high and low permeability drugs (metoprolol and mannitol, respectively) were used as external standards. Biomimetic properties of Franz-PAMPA were also characterized by electron paramagnetic resonance spectroscopy (EPR). Moreover, the permeation profile for eight Biopharmaceutic Classification System (BCS) model drugs cited in the FDA guidance and another six drugs (acyclovir, cimetidine, diclofenac, ibuprofen, piroxicam, and trimethoprim) were measured across Franz-PAMPA. Apparent permeability (Papp) Franz-PAMPA values were correlated with fraction of dose absorbed in humans (Fa%) from the literature. Papp in Caco-2 cells and Corti artificial membrane were likewise compared to Fa% to assess Franz-PAMPA performance. Mannitol and metoprolol Papp values across Franz-PAMPA were lower (3.20 × 10-7 and 1.61 × 10-5 cm/s, respectively) than those obtained across non-impregnated membrane (2.27 × 10-5 and 2.55 × 10-5 cm/s, respectively), confirming lipidic barrier resistivity. Performance of the Franz cell permeation apparatus using an artificial membrane showed acceptable log-linear correlation (R2 = 0.664) with Fa%, as seen for Papp in Caco-2 cells (R2 = 0.805). Data support the validation of the Franz-PAMPA method for use during the drug discovery process.

Keywords: BCS drugs; Franz cell; Franz–PAMPA; biomimetic membrane; passive drug transport.