Atropine and Scopolamine in Maize Products from the Retail Stores in the Republic of Serbia

Toxins (Basel). 2022 Sep 5;14(9):621. doi: 10.3390/toxins14090621.

Abstract

The cereal grains, which represent the cultivated grasses fruits, supply almost half of the total caloric requirements for humans and provide more nourishment compared with any other class of the food. Out of many cereals used for food, maize, rice, and wheat are the most important food resources for humans, representing 94% of the total cereals consumption. According to the data of the Republic Institute of Statistics for the year 2018, the harvested areas of corn amount to 906,753 hectares. The production of about 7 million tons was achieved with an average yield of 7.7 t/ha according to the Ministry of Agriculture of the Republic of Serbia. Serbia is still among the ten largest exporters of wheat and corn in the world for the period of 2014/15-2017/18. More precisely, it ranks seventh in the export of corn. Utilization of maize products for food animal nutrition (1000 t) is 491,48, and for industrial processing (1000 t) 278,862 expressed as the total consumption (1000 t) is 769,910. Therefore, a total of 103 samples of maize products were analyzed for the presence of toxins, i.e., tropane alkaloids (TAs). The samples were collected from the retail stores in the Republic of Serbia in 2021 and analyzed for the presence of atropine and scopolamine (33 corn grits, 39 polenta, and 31 semolina samples). Therefore, the Recommendation 2015/976/EU on the monitoring of TAs in food was adopted by the EU Commission to obtain more occurrence data on TAs in food. The monitoring extent, however, is restricted because reliable analytical methods and appropriate sensitivity are limited. There was a limit of 1 g/kg for each atropine and scopolamine in cereals containing millet, sorghum, buckwheat, or their derivatives. All the samples were analyzed by the LC-MS/MS. The LOQ was set at 1.0 μg/kg. Out of the total 103 tested samples, 32 samples (31.1%) were contaminated with atropine and scopolamine in concentrations above the LOQ. The highest concentrations of the studied TAs were observed in a semolina sample-atropine: 58.80 μg/kg, scopolamine: 10.20 μg/kg. The obtained results indicate that the TAs concentrations are above the LOQ which can be considered potential human and animal health hazards.

Keywords: LC-MS/MS; atropine; food safety; scopolamine; toxins.

MeSH terms

  • Animals
  • Atropine*
  • Chromatography, Liquid / methods
  • Edible Grain / chemistry
  • Food Contamination / analysis
  • Humans
  • Scopolamine* / analysis
  • Serbia
  • Tandem Mass Spectrometry / methods
  • Tropanes / analysis
  • Zea mays

Substances

  • Tropanes
  • Atropine
  • Scopolamine

Grants and funding

This research received no external funding.