The Stream Exchange Protocol: A Secure and Lightweight Tool for Decentralized Connection Establishment

Sensors (Basel). 2021 Jul 21;21(15):4969. doi: 10.3390/s21154969.

Abstract

With the growing availability and prevalence of internet-capable devices, the complexity of networks and associated connection management increases. Depending on the use case, different approaches in handling connectivity have emerged over the years, tackling diverse challenges in each distinct area. Exposing centralized web-services facilitates reachability; distributing information in a peer-to-peer fashion offers availability; and segregating virtual private sub-networks promotes confidentiality. A common challenge herein lies in connection establishment, particularly in discovering, and securely connecting to peers. However, unifying different aspects, including the usability, scalability, and security of this process in a single framework, remains a challenge. In this paper, we present the Stream Exchange Protocol (SEP) collection, which provides a set of building blocks for secure, lightweight, and decentralized connection establishment. These building blocks use unique identities that enable both the identification and authentication of single communication partners. By utilizing federated directories as decentralized databases, peers are able to reliably share authentic data, such as current network locations and available endpoints. Overall, this collection of building blocks is universally applicable, easy to use, and protected by state-of-the-art security mechanisms by design. We demonstrate the capabilities and versatility of the SEP collection by providing three tools that utilize our building blocks: a decentralized file sharing application, a point-to-point network tunnel using the SEP trust model, and an application that utilizes our decentralized discovery mechanism for authentic and asynchronous data distribution.

Keywords: connectivity; federated; peer-to-peer; secure connection establishment; trust model.

MeSH terms

  • Computer Communication Networks
  • Computer Security*
  • Confidentiality
  • Databases, Factual
  • Rivers*