Deciphering nitrous oxide emissions from tropical soils of different land uses

Sci Total Environ. 2023 Mar 1:862:160916. doi: 10.1016/j.scitotenv.2022.160916. Epub 2022 Dec 14.

Abstract

Tropical regions are hotspots of increasing greenhouse gas emissions associated with land-use change. Although many field studies have quantified soil fluxes of nitrous oxide (N2O; a potent greenhouse gas) from various land uses, the driving mechanisms remain uncertain. Here, we used tropical soils of diverse land uses and actively manipulated the soil moisture (35%, 60%, and 95% water-filled pore space [WFPS]) and substrate supply (control, nitrate, and nitrate plus glucose) to investigate the responses of N2O emissions with short-term incubations. We then identified key factors regulating N2O emissions out of a series of soil physicochemical and biological factors and explored how these factors interacted to drive N2O emissions. Land-use changes from primary forest to oil palm or Acacia plantation risks emitting more N2O, whereas low emissions could be maintained by conversion to Macaranga forest or Imperata grassland; these laboratory observations were corroborated by a literature synthesis of field N2O measurements across tropical regions. Soil redox potential (Eh) and labile organic nitrogen (LON; amino acid mixture, arginine, and urea) mineralization were among the factors with greatest influence on N2O emissions. In contrast to common understandings, the control of WFPS over N2O emissions was largely indirect, and acted through Eh. The mineralization of LON, particularly arginine, potentially played multiple roles in N2O production (e.g., bottlenecks of nitrifier-denitrification or simultaneous nitrification-denitrification versus substrate competition for co-denitrification). Structural equation models suggest that soil-environmental factors of different levels (from distal including land use, soil moisture, and pH to proximal such as LON mineralization) drive N2O emissions through cascading interactions. Overall, we show that, despite identical initial soil conditions, land conversion can substantially alter the N2O emission potential. Also, collectively considering soil-environmental regulators and their interactions associated with land conversion is crucial to predict and design mitigation strategies for N2O emissions from land-use change.

Keywords: Arginine mineralization; Labile organic N compound; Land-use change; Soil redox potential; Tropical primary forest; Water-filled pore space.

MeSH terms

  • Agriculture
  • Greenhouse Gases*
  • Nitrates / analysis
  • Nitrous Oxide / analysis
  • Soil* / chemistry

Substances

  • Soil
  • Nitrous Oxide
  • Nitrates
  • Greenhouse Gases