Equivalence of nonequilibrium ensembles: Two-dimensional turbulence with a dual cascade

Phys Rev E. 2023 Jul;108(1-2):015102. doi: 10.1103/PhysRevE.108.015102.

Abstract

We examine the conjecture of equivalence of nonequilibrium ensembles for turbulent flows in two dimensions in a dual-cascade setup. We construct a formally time-reversible Navier-Stokes equation in two dimensions by imposing global constraints of energy and enstrophy conservation. A comparative study of the statistical properties of its solutions with those obtained from the standard Navier-Stokes equations clearly shows that a formally time-reversible system is able to reproduce the features of a two-dimensional turbulent flow. Statistical quantities based on one- and two-point measurements show an excellent agreement between the two systems for the inverse- and direct-cascade regions. Moreover, we find that the conjecture holds very well for two-dimensional turbulent flows with both conserved energy and enstrophy at finite Reynolds number.