Synthesis of ZnO Nanoparticles Doped with Cobalt Using Bimetallic ZIFs as Sacrificial Agents

Nanomaterials (Basel). 2020 Jun 30;10(7):1275. doi: 10.3390/nano10071275.

Abstract

: We report here a simple two-stage synthesis of zinc-cobalt oxide nanoparticles. We used Zn/Co-zeolite imidazolate framework (ZIF)-8 materials as precursors for annealing and optional impregnation with a silicon source for the formation of a protective layer on the surface of oxide nanoparticles. Using bimetallic ZIFs allowed us to trace the phase transition of the obtained oxide nanoparticles from wurtzite ZnO to spinel Co3O4 structures. Using (X-Ray diffraction) XRD and (X-ray Absorption Near Edge Structure) XANES techniques, we confirmed the incorporation of cobalt ions into the ZnO structure up to 5 mol.% of Co. Simple annealing of Zn/Co-ZIF-8 materials in the air led to the formation of oxide nanoparticles of about 20-30 nm, while additional treatment of ZIFs with silicon source resulted in nanoparticles of about 5-10 nm covered with protective silica layer. We revealed the incorporation of oxygen vacancies in the obtained ZnO nanoparticles using FTIR analysis. All obtained samples were comprehensively characterized, including analysis with a synchrotron radiation source.

Keywords: Co3O4; ZIF-67; ZIF-8; bimetallic; cobalt doping; oxygen vacancies; pyrolysis; zinc oxide.