Rhosin Suppressed Tumor Cell Metastasis through Inhibition of Rho/YAP Pathway and Expression of RHAMM and CXCR4 in Melanoma and Breast Cancer Cells

Biomedicines. 2021 Jan 4;9(1):35. doi: 10.3390/biomedicines9010035.

Abstract

The high mortality rate of cancer is strongly correlated with the development of distant metastases at secondary sites. Although Rho GTPases, such as RhoA, RhoB, RhoC, and RhoE, promote tumor metastasis, the main roles of Rho GTPases remain unidentified. It is also unclear whether rhosin, a Rho inhibitor, acts by suppressing metastasis by a downstream inhibition of Rho. In this study, we investigated this mechanism of metastasis in highly metastatic melanoma and breast cancer cells, and the mechanism of inhibition of metastasis by rhosin. We found that rhosin suppressed the RhoA and RhoC activation, the nuclear localization of YAP, but did not affect ERK1/2, Akt, or NF-κB activation in the highly metastatic cell lines B16BL6 and 4T1. High expression of YAP was associated with poor overall and recurrence-free survival in patients with breast cancer or melanoma. Treatment with rhosin inhibited lung metastasis in vivo. Moreover, rhosin inhibited tumor cell adhesion to the extracellular matrix via suppression of RHAMM expression, and inhibited SDF-1-induced cell migration and invasion by decreasing CXCR4 expression in B16BL6 and 4T1 cells. These results suggest that the inhibition of RhoA/C-YAP pathway by rhosin could be an extremely useful therapeutic approach in patients with melanoma and breast cancer.

Keywords: CXCR4; RHAMM; Rho; YAP; breast cancer; melanoma; metastasis; rhosin.