Disentangling the impact of Atlantic Niño on sea-air CO2 flux

Nat Commun. 2023 Jun 20;14(1):3649. doi: 10.1038/s41467-023-38718-9.

Abstract

Atlantic Niño is a major tropical interannual climate variability mode of the sea surface temperature (SST) that occurs during boreal summer and shares many similarities with the tropical Pacific El Niño. Although the tropical Atlantic is an important source of CO2 to the atmosphere, the impact of Atlantic Niño on the sea-air CO2 exchange is not well understood. Here we show that the Atlantic Niño enhances (weakens) CO2 outgassing in the central (western) tropical Atlantic. In the western basin, freshwater-induced changes in surface salinity, which considerably modulate the surface ocean CO2 partial pressure (pCO2), are the primary driver for the observed CO2 flux variations. In contrast, pCO2 anomalies in the central basin are dominated by the SST-driven solubility change. This multi-variable mechanism for pCO2 anomaly differs remarkably from the Pacific where the response is predominantly controlled by upwelling-induced dissolved inorganic carbon anomalies. The contrasting behavior is characterized by the high CO2 buffering capacity in the Atlantic, where the subsurface water mass contains higher alkalinity than in the Pacific.