High-temperature tensile strength of C/SiC composite under laser-induced high heating flux in an aerobic environment

Sci Rep. 2024 Mar 21;14(1):6838. doi: 10.1038/s41598-024-57266-w.

Abstract

Based on the advantages of laser high brightness, a high-temperature mechanical property measuring device has been developed, which can measure the high-temperature strength of C/SiC composites under the condition of short-term high-temperature rise rate and solve the problem of over-oxidation of materials in conventional high-temperature mechanical properties experiments. The experimental results show that the maximum temperature rise rate is 260 ℃/s at the initial heating stage, and the test time is controlled within 35 s. The tensile strength of the prepared C/SiC composites decreased first and then increased at high temperatures and laser-induced high temperatures. The experimental results are similar to those in the literature under the inert atmosphere. Oxidation has less of an effect on the mechanical characteristics of materials under conditions of rapid temperature rise. The system can be used to test the mechanical properties of composite materials at high temperatures and as a simulation platform for the thermal response of specific thermal protection systems subjected to a constant heat flux. This study can provide a new idea for testing ultra-high temperature mechanical properties of C/SiC materials and provide key technical support for the engineering application and high-temperature testing of C/SiC materials in high-temperature environments.

Keywords: C/SiC; Double-sided irradiation; High temperature; Laser; Tensile strength.