Irreversible Swelling Behavior and Reversible Hysteresis in Chemically Crosslinked Poly(vinyl alcohol) Gels

Gels. 2018 May 21;4(2):45. doi: 10.3390/gels4020045.

Abstract

We report the swelling properties of chemically crosslinked poly(vinyl alcohol) (PVA) gels with high degrees of polymerization and hydrolysis. Physical crosslinking by microcrystallites was introduced in this chemical PVA gel by a simple dehydration process. The equilibrium swelling ratio was measured in several mixed solvents, which comprised two-components: a good solvent (water or dimethyl sulfoxide (DMSO)), and a poor organic solvent for PVA. In the case of aqueous/organic solvent mixtures subjected to a multiple-sample test, the swelling ratio decreased continuously when the concentration of the organic solvent increased, reaching a collapsed state in the respective pure organic solvents. In the case of DMSO, starting from a swollen state, the swelling ratio rapidly decreased by between 15 and 50 mol % when the concentration of the organic compound increased in a single-sample test. To understand the hysteresis phenomenon, the swelling ratio was measured in a DMSO/acetone mixed solvent, starting from a collapsed state in acetone. The reversibility of swelling in response to successive concentration cycles between DMSO and acetone was examined. As a result, an irreversible swelling behavior was observed in the first cycle, and the swelling ratio in acetone after the first cycle became larger than the initial ratio. Subsequently, the swelling ratio changed reversibly, with a large hysteresis near a specific molar ratio of DMSO/acetone of 60/40. The microstructures were confirmed by Fourier transform infrared spectroscopy during the cycles. The irreversible swelling behavior and hysteresis are discussed in terms of the destruction and re-formation of additional physical crosslinking in the chemical PVA gels.

Keywords: chemical gel; hydrogen bond; hysteresis; microcrystallite; poly(vinyl alcohol); swelling behavior.