Anti-Inflammatory Activity of Monosubstituted Xestoquinone Analogues from the Marine Sponge Neopetrosia compacta

Antioxidants (Basel). 2022 Mar 22;11(4):607. doi: 10.3390/antiox11040607.

Abstract

Chronic inflammation is recognized as a contributor to multiple chronic diseases, such as cancer, cardiovascular, and autoimmune disorders. Here, a natural products-initiated discovery of anti-inflammatory agents from marine sponges was undertaken. From the screening of 231 crude extracts, a total of 30 extracts showed anti-inflammatory activity with no direct cytotoxic effects at 50 μg/mL on RAW 264.7 (ATCC®TIB-71™) murine macrophage cells stimulated with 1 μg/mL lipopolysaccharide (LPS). Bioactivity-guided purification of the anti-inflammatory extract from the sponge Neopetrosia compacta led to the isolation of xestoquinone (1), adociaquinone B (2), adociaquinone A (3), 14-hydroxymethylxestoquinone (4), 15-hydroxymethylxestoquinone (5), and an inseparable 2:1 mixture of 14-methoxyxestoquinone and 15-methoxyxestoquinone (6). Compounds 1-6 caused a concentration-dependent reduction of nitric oxide (NO) production in LPS-stimulated RAW 264.7 cells, with 4-6 having low micromolar IC50 and acceptable selectivity index. Gene expression analysis using qRT-PCR showed that 1, 5, and 6 downregulated Il1b and Nos2 expression by 2.1- to 14.8-fold relative to the solvent control at 10 μM. Xestoquinone (1) and monosubstituted analogues (4-6), but not the disubstituted adociaquinones (2 and 3), caused Nrf2 activation in a luciferase reporter MCF7 stable cells. Compounds 5 and 6 caused a modest increase in Nqo1 gene expression at 10 μM. The anti-inflammatory activity of xestoquinone (1) and monosubstituted analogues (4-6) may, in part, be mediated by Nrf2 activation, leading to attenuation of inflammatory mediators such as IL-1β and NOS2.

Keywords: Nrf2 activation; anti-inflammatory; marine sponge; natural products; xestoquinone.