A Novel Magnetic Graphene Oxide Composite Absorbent for Removing Trace Residues of Polybrominated Diphenyl Ethers in Water

Materials (Basel). 2014 Aug 21;7(8):6028-6044. doi: 10.3390/ma7086028.

Abstract

The purpose of the study was to develop a facile method for the fabrication of a stable and reusable magnetic graphene composite absorbent to remove trace levels of polybrominated diphenyl ethers in water treatment. The poly cationic Fe₃O₄@PDDA (poly(diallyldimethyl ammonium chloride) (PDDA)) core-shell structured nanoparticles were first synthesized, and then, DNA was laid on the surface of graphene oxide (GOx) to prepare the polyanionic GOx@DNA composite. The above materials were then mixed together and adhered together through sol-gel technology. Thus, the Fe₃O₄@PDDA/GOx@DNA composite absorbent was prepared. Its performance was tested by disperse solid phase extraction and gas chromatography/mass spectrometric (GC/MS) for removing six kinds of indicative polybrominated diphenyl ethers (BDEs) in water samples. The removal percentages of several real samples for six kinds of BDEs (BDE17, BDE28, BDE 71, BDE 47, BDE 66, BDE 100) at the ng/mL order of magnitude were in the range of 88.2%-99.1%. The removal percentage still reached 80.0% when the adsorbent was reused at least 20 times. The results suggested that the magnetic absorbent can obviously remove trace levels of BDEs from large volumes of aqueous solutions in environmental pollution cleanup with high removal efficiency.

Keywords: graphene oxide; magnetic disperse solid phase extraction; polybrominated diphenyl ethers; sol-gel technology; water treatment.