The effect of ascorbic acid and bio fertilizers on basil under drought stress

Braz J Biol. 2022 Jul 11:84:e262459. doi: 10.1590/1519-6984.262459. eCollection 2022.

Abstract

Evaluate the effect of ascorbic acid application and coexistence of Mycorrhiza fungus and Azospirillium on basil (Ocimum basilicum L.) under drought stress. This experiment was performed as a split factorial in a randomized complete block design with three replications in the crop year 2017-2018 in Shahriar, Iran. In this experiment, irrigation was the main factor in three levels, including drought stress based on 40-70-100 mm from the evaporation pan of class A. Biofertilizer including growth-promoting bacteria (Azospirillium) and mycorrhiza fungus in four levels, including a(Non-consumption) B (Seeds of growth-promoting bacteria (Azospirillium)) C (Consumption of mycorrhiza fungus as seeds) D (Concomitant use of growth-promoting bacteria Azospirillium with mycorrhiza fungi as seeds) and ascorbic acid in two levels of foliar application, including A (Absence Application of ascorbic acid) and B (Application of ascorbic acid (two days after irrigation treatment)) was considered as a factorial factor. The results showed that the highest biological yield was obtained in drought stress of 40 mm and application of biological fertilizers in the form of mycorrhiza application with an average of 3307.1 kg/ha, which was about 70% more than 100 mm evaporation stress and no application of biological fertilizer. The use of ascorbic acid under drought stress conditions improved by 10%, the essential oil using ascorbic acid evaporated under drought stress conditions of 100 mm. As a general conclusion, the use of ascorbic acid and Mycorrhiza + Azospirillium biological fertilizer improved the quantitative and qualitative characteristics of basil under drought stress.

MeSH terms

  • Ascorbic Acid / pharmacology
  • Droughts
  • Fertilizers*
  • Ocimum basilicum*
  • Seeds

Substances

  • Ascorbic Acid
  • Fertilizers