Efficient Interference Estimation with Accuracy Control for Data-Driven Resource Allocation in Cloud-RAN

Sensors (Basel). 2018 Sep 7;18(9):3000. doi: 10.3390/s18093000.

Abstract

The emerging edge computing paradigm has given rise to a new promising mobile network architecture, which can address a number of challenges that the operators are facing while trying to support growing end user's needs by shifting the computation from the base station to the edge cloud computing facilities. With such powerfully computational power, traditional unpractical resource allocation algorithms could be feasible. However, even with near optimal algorithms, the allocation result could still be far from optimal due to the inaccurate modeling of interference among sensor nodes. Such a dilemma calls for a measurement data-driven resource allocation to improve the total capacity. Meanwhile, the measurement process of inter-nodes' interference could be tedious, time-consuming and have low accuracy, which further compromise the benefits brought by the edge computing paradigm. To this end, we propose a measurement-based estimation solution to obtain the interference efficiently and intelligently by dynamically controlling the measurement and estimation through an accuracy-driven model. Basically, the measurement cost is reduced through the link similarity model and the channel derivation model. Compared to the exhausting measurement method, it can significantly reduce the time cost to the linear order of the network size with guaranteed accuracy through measurement scheduling and the accuracy control process, which could also balance the tradeoff between accuracy and measurement overhead. Extensive experiments based on real data traces are conducted to show the efficiency of the proposed solutions.

Keywords: cloud-RAN; edge computing; interference measurement; modeling; resource allocation.