Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China

Sci Total Environ. 2018 Nov 15:642:864-878. doi: 10.1016/j.scitotenv.2018.06.034. Epub 2018 Jun 17.

Abstract

The objective of this study was to investigate heavy metal contamination in four major vegetable bases and determine the health risks of residents in the vicinity of the highly urbanized city Urumqi in Xinjiang, China. In this paper, we determined the contents of six heavy metals (i.e., As, Zn, Cd, Cr, Hg, and Pb) in surface soil and groundwater to evaluate the levels of heavy metal pollution and human health risks using the pollution index (PI), the Nemerow integrated pollution index (NIPI), the ecological risk factor (Eir), risk index (RI) and the health risk assessment model. The results showed that (1) The PI, NIPI, the ecological risk factor and risk index indicated that Cd and Hg were the primary pollutants in Sishihu village. These indices suggested moderate to slightly heavy potential ecological risks. In Anningqu town, Hg and Cd led to high levels of pollution and posed slightly heavy potential ecological risks. In Qinggedahu village, it was concluded that the metals Zn, Cr, Cd, Hg, and Pb caused moderate to heavy pollution. In Liushihu village, the pollution trends in the area were low. The results of the pollution level of the irrigation well water (i.e., groundwater) indicated that the well water was considerably safer than the soil, but Cr posed a slight pollution risk. (2) The non-carcinogenic risks for adults based on the HI values of these four vegetable bases were <1. However, when considering the non-carcinogenic risks for children, the HI values were larger than 1 in all areas, indicating the local children have a higher potential non-carcinogenic risk. In addition, CR (Carcinogenic risk) from dermal contact with the vegetables bases did not pose a high risk for residents. However, for adults, the carcinogenic risk posed by Arsenic (As) through trough inhalation was the primary pathway of exposure in three of the vegetable bases, generally in the order of Qinggedahu village > Sishihu village > Anningqu town. For children, the carcinogenic risks posed by As through trough inhalation and ingestion were the main exposure pathways. From the TCR results, it can be seen that in Sishihu village, Anningqu town, and Qinggedahu village, the TCR values for adults and children were >1 × 10-4 (unitless), and this degree of carcinogenic risk is unacceptable. (3) The identification of risk sources determined the main pollution sources affecting the vegetable bases were human activities and natural sources. Anthropogenic activities were most often related to traffic pollution sources and agricultural pollution sources, such as the irrational use of pesticides and fertilizers and stock farming. The results are important for designing remediation scenarios to control the spread of contamination as well as for serving as a reference point for soil environmental protection efforts in this region.

Keywords: Health risk assessment; Heavy metal pollution; Source identification; Vegetable base.

MeSH terms

  • Adult
  • Child
  • China
  • Cities
  • Environmental Monitoring*
  • Humans
  • Metals, Heavy / toxicity*
  • Risk Assessment
  • Soil
  • Soil Pollutants / toxicity*
  • Vegetables

Substances

  • Metals, Heavy
  • Soil
  • Soil Pollutants