Analysis of an Integrated Solar Combined Cycle with Recuperative Gas Turbine and Double Recuperative and Double Expansion Propane Cycle

Entropy (Basel). 2020 Apr 21;22(4):476. doi: 10.3390/e22040476.

Abstract

The main objective of this paper is to present and analyze an innovative configuration of integrated solar combined cycle (ISCC). As novelties, the plant includes a recuperative gas turbine and the conventional bottoming Rankine cycle is replaced by a recently developed double recuperative double expansion (DRDE) cycle. The configuration results in a fuel saving in the combustion chamber at the expense of a decreased exhaust gas temperature, which is just adequate to feed the DRDE cycle that uses propane as the working fluid. The solar contribution comes from a solar field of parabolic trough collectors, with oil as the heat transfer fluid. The optimum integration point for the solar contribution is addressed. The performance of the proposed ISCC-R-DRDE design conditions and off-design operation was assessed (daily and yearly) at two different locations. All results were compared to those obtained under the same conditions by a conventional ISCC, as well as similar configurations without solar integration. The proposed configuration obtains a lower heat rate on a yearly basis in the studied locations and lower levelized cost of energy (LCOE) than that of the ISCC, which indicates that such a configuration could become a promising technology.

Keywords: ISCC; advanced thermodynamic cycles; concentrating solar power (CSP); hybridization; recuperative and double expansion (RDE) cycle; recuperative gas turbine.