Investigating the Effects of Time and Temperature on the Growth of Escherichia coli O157:H7 and Listeria monocytogenes in Raw Cow's Milk Based on Simulated Consumer Food Handling Practices

Int J Environ Res Public Health. 2019 Jul 28;16(15):2691. doi: 10.3390/ijerph16152691.

Abstract

Consumption of raw cow's milk (RCM) is increasing in popularity in developed countries despite the associated foodborne disease risks. While previous research has focused on consumer motivations for drinking RCM, there is limited research on how consumer handling practices may impact the microbiological safety of RCM. In this study, consumer handling practices associated with transport, storage, and freezing and thawing were simulated to investigate the impact of time and temperature variables on the concentrations of either Escherichia coli O157:H7 or Listeria monocytogenes in RCM. We found that the type of storage during simulated transport had a large (η2 = 0.70) and significant (p < 0.001) effect on both pathogens. The refrigeration temperature also had a large (η2 = 0.43) and significant (p < 0.001) effect on both pathogens during refrigerated storage. The interaction between pathogen species and initial pathogen inoculum level had a large (η2 = 0.20) and significant (p = 0.012) effect on the concentration of the pathogens during ambient temperature storage. We found that freezing and thawing practices did not have a significant effect on the pathogens (p > 0.05). However, we were able to recover L. monocytogenes, but not E. coli O157:H7, from RCM after freezing for 365 days. The results from this study highlight that consumer transport and storage practices can have significant effects on the growth of E. coli O157:H7 and L. monocytogenes in RCM. Consumer food handling practices should be considered when developing public health strategies aimed at reducing the risks of RCM consumption.

Keywords: Escherichia coli O157:H7; L. monocytogenes; consumer food handling practices; raw milk.

MeSH terms

  • Animals
  • Cattle
  • Colony Count, Microbial
  • Escherichia coli O157 / growth & development*
  • Food Handling
  • Food Microbiology*
  • Foodborne Diseases
  • Listeria monocytogenes / growth & development*
  • Milk / microbiology*
  • Temperature