Evaluating Post-Earthquake Building Safety Using Economical MEMS Seismometers

Sensors (Basel). 2018 May 5;18(5):1437. doi: 10.3390/s18051437.

Abstract

The earthquake early warning (EEW)-research group at National Taiwan University has been developing a microelectromechanical system-based accelerometer called “P-Alert”, designed for issuing EEWs. The main advantage of P-Alert is that it is a relatively economical seismometer. However, because of the expensive nature of commercial hardware for structural health monitoring (SHM) systems, the application of SHM to buildings remains limited. To determine the performance of P-Alert for evaluating post-earthquake building safety, we conducted a series of steel-frame shaking table tests with incremental damage. We used the fragility curves of different damage levels and the interstory drift ratios (calculated by the measured acceleration of each story using double integration and a filter) to gauge the potential damage levels. We concluded that the acceptable detection of damage for an entire building is possible. With improvements to the synchronization of the P-Alert sensors, we also anticipate a damage localization feature for the stories of a building.

Keywords: P-Alert; accelerometer; building safety; post-earthquake; seismometer.