Analysis of Angiotensin Converting Enzyme, Endothelial Nitric Oxide Synthase & Serotonin Gene Polymorphisms among Atrial Septal Defect Subjects with and without Pulmonary Arterial Hypertension

J Cardiovasc Dev Dis. 2018 Sep 18;5(3):48. doi: 10.3390/jcdd5030048.

Abstract

Genetic polymorphisms are variations in DNA sequences which can influence either disease susceptibility, severity, or prognosis. Pulmonary arterial hypertension (PAH) is one of the complications that occurs in certain patients who have atrial septal defect (ASD). This study seeks to determine the association of gene polymorphisms with the pathogenesis of PAH in ASD patients. This study was conducted on 30 ASD patients with PAH, and 50 ASD patients who were not diagnosed with PAH. All respondents were Malay. Patients were selected based on stringent inclusion and exclusion criteria. Molecular analyses were done to detect the genetic polymorphisms of angiotensin converting enzyme (ACE I/D), serotonin transporter (5-HTTLPR), endothelial nitric oxide synthase (eNOS) G894T, and eNOS 4b/4a. The genotypes of these genetic polymorphisms were determined using conventional PCR and PCR-RFLP methods. The PCR products were analysed using agarose gel electrophoresis. Statistical analysis was done using SPSS Version 22. Clinical characteristics, such as the diameter of ASD, mean arterial pressure (MAP), and mean pulmonary artery pressure (mPAP) differed significantly (p < 0.05). Based on the statistical analysis, ACE I/D, eNOS G894T, and eNOS 4b/4a do not contribute to the progression of PAH amongst ASD patients (p > 0.05). However, the L allele of the 5-HTTLPR gene polymorphism may have an affect on the development of PAH in ASD patients (p < 0.05).

Keywords: atrial septal defect; genetic polymorphisms; pulmonary artery hypertension.