Biomimetic Approach for the Elaboration of Highly Hydrophobic Surfaces: Study of the Links between Morphology and Wettability

Biomimetics (Basel). 2021 Jun 8;6(2):38. doi: 10.3390/biomimetics6020038.

Abstract

This investigation of morphology-wetting links was performed using a biomimetic approach. Three natural leaves' surfaces were studied: two bamboo varieties and Ginkgo Biloba. Multiscale surface topographies were analyzed by SEM observations, FFT, and Gaussian filtering. A PDMS replicating protocol of natural surfaces was proposed in order to study the purely morphological contribution to wetting. High static contact angles, close to 135∘, were measured on PDMS replicated surfaces. Compared to flat PDMS, the increase in static contact angle due to purely morphological contribution was around 20∘. Such an increase in contact angle was obtained despite loss of the nanometric scale during the replication process. Moreover, a significant decrease of the hysteresis contact angle was measured on PDMS replicas. The value of the contact angle hysteresis moved from 40∘ for flat PDMS to less than 10∘ for textured replicated surfaces. The wetting behavior of multiscale textured surfaces was then studied in the frame of the Wenzel and Cassie-Baxter models. Whereas the classical laws made it possible to describe the wetting behavior of the ginkgo biloba replications, a hierarchical model was developed to depict the wetting behavior of both bamboo species.

Keywords: biomimetics; hydrophobic surfaces; multiscale roughness; replication process; wetting.