Monitoring of Pore Orientation by in Operando Grazing Incidence Small-Angle X-ray Scattering during Templated Electrodeposition of Mesoporous Pt Films

ACS Appl Mater Interfaces. 2023 Oct 11;15(40):47604-47614. doi: 10.1021/acsami.3c03316. Epub 2023 Sep 28.

Abstract

We have used in operando grazing incidence small-angle X-ray scattering (GISAXS) to monitor structural changes during templated electrodeposition of mesoporous platinum films on gold electrodes from a ternary lyotropic liquid crystalline mixture of aqueous hexachloroplatinic acid and the diblock copolymer surfactant Brij56. While the cylindrical micelles of the lyotropic liquid crystal (LLC) in the hexagonal phase have a center-to-center distance of 7.5 nm with a preferential alignment parallel to the electrode surface, the electrodeposited platinum films contain highly ordered mesopores arranged in a 2D hexagonal structure, with a center-to-center distance of about 8.5 nm and a preferential orientation perpendicular to the electrode surface. The progression of structural changes of the LLC template and the deposited mesoporous Pt could be monitored for the first time in operando by GISAXS: within the first 14 s of deposition, a nucleation burst of Pt coincides with a loss of preferential alignment of the LLC. Initially, the morphology of the 2-dimensionally nucleated Pt replicates the Au substrate. During the following 5 to 7 min, the growth morphology of the Pt film changes, and vertically aligned mesopores form. Our results indicate mutual interaction between the species involved in the electrodeposition and the LLC template, leading to a partial loss of horizontal orientation of the LLC during Pt nucleation before vertical rearrangement of the micelles to the electrode surface. The vertically aligned mesopores in the Pt and the possibility to produce freestanding films make these materials interesting in fields such as electrocatalysis, energy harvesting, and nanofluidics.

Keywords: in operando GISAXS; mesoporous platinum films; templated electrochemical deposition.