Optical Study and Experimental Realization of Nanostructured Back Reflectors with Reduced Parasitic Losses for Silicon Thin Film Solar Cells

Nanomaterials (Basel). 2018 Aug 18;8(8):626. doi: 10.3390/nano8080626.

Abstract

We study light trapping and parasitic losses in hydrogenated amorphous silicon thin film solar cells fabricated by plasma-enhanced chemical vapor deposition on nanostructured back reflectors. The back reflectors are patterned using polystyrene assisted lithography. By using O₂ plasma etching of the polystyrene spheres, we managed to fabricate hexagonal nanostructured back reflectors. With the help of rigorous modeling, we study the parasitic losses in different back reflectors, non-active layers, and last but not least the light enhancement effect in the silicon absorber layer. Moreover, simulation results have been checked against experimental data. We have demonstrated hexagonal nanostructured amorphous silicon thin film solar cells with a power conversion efficiency of 7.7% and around 34.7% enhancement of the short-circuit current density, compared with planar amorphous silicon thin film solar cells.

Keywords: light trapping; nanostructured back reflectors; photovoltaics; polystyrene sphere assisted lithography; silicon thin film.