On the Calibration of GNSS-Based Vehicle Speed Meters

Sensors (Basel). 2020 Jan 21;20(3):591. doi: 10.3390/s20030591.

Abstract

Thanks to their metrological characteristics (accuracy, dimensions, synchronization capability, easy interfacing, and so on), in the last few years, the GNSS (Global Navigation Satellite System) based speed instruments are often used in a wide field of application. The traceability of the measurement results achieved by the GNSS instrument should be made by means of calibration procedures in compliance with the ISO/IEC 17025 standard and ILAC (International Laboratory Accreditation Cooperation) policy on the traceability of measurement results. In this context, some calibration methodologies have been proposed in the literature or used by some calibration centers. In a speed range from 1 to 300 km/h, an analysis on the suitability of the experimental calibration method (based on a couple of photocells placed on the road at a certain distance) for the GNSS speed measurement systems is presented in this paper. An analysis of the measurement setup has allowed for the recognition of both all the uncertainty contributions and defines the variability range of their values. After the formulation of the relationships between the uncertainty contributions and the total calibration uncertainty due to the calibration method, the sensitivity analysis has been made. The analyzed measurement setup, even if considering a careful choice of both instrumentations and methodologies, is suitable for the calibration of high accuracy GNSS based instruments only considering distances between the photocells sufficiently large and for speed values lower than 200 km/h. In any case, the proposed analysis can be a useful tool to allow for the choices on the measurement setup to reach the desired trade-off between calibration costs and compliance with technical requirements and also the calibration of instrumentation different by GNSS.

Keywords: GNSS; calibration; metrological traceability; speed measurement; uncertainty.