Strain Acquisition Framework and Novel Bending Evaluation Formulation for Compression-Loaded Composites Using Digital Image Correlation

Materials (Basel). 2021 Oct 9;14(20):5931. doi: 10.3390/ma14205931.

Abstract

Consistent and reproducible data are key for material characterization. This work presents digital image correlation (DIC) strain acquisition guidelines for compression-loaded carbon fiber composites. Additionally, a novel bending criterion is formulated which builds up on the DIC strain data so that it is able to completely replace state-of-the-art tactile strain devices. These guidelines are derived from a custom test setup that simultaneously investigates the front and side view of the specimen. They reflect both an observation and post-processing standpoint. It is found that the DIC-based strain progress matches closely with state-of-the-art strain gauges up to failure initiation. The new bending evaluation criterion allows the bending state-and therefore, the validity of the compression test-to be monitored analogously to the methodology defined in the standards. Furthermore, the new bending criterion eliminates a specific bending mode, caused by an offset of clamps, which cannot be detected by the traditional strain gauge-based monitoring approach.

Keywords: composite material characterization; digital image correlation; mechanical properties; mechanical testing.