Combination of Plant Growth Regulators, Maltose, and Partial Desiccation Treatment Enhance Somatic Embryogenesis in Selected Malaysian Rice Cultivar

Plants (Basel). 2019 May 30;8(6):144. doi: 10.3390/plants8060144.

Abstract

The development of efficient tissue culture protocol for somatic embryo would facilitate the genetic modification breeding program. The callus induction and regeneration were studied by using different parameters i.e., auxins, cytokinins, and desiccation treatment. Scanning electron microscopy and histological analysis were performed to identify the embryogenic callus for regeneration. The callus percentage results showed that MS (Murashige and Skoog) basal medium supplemented with 3 mg/L 2, 4-D and 30g/L maltose were the optimal callus induction medium for MR220 (80%) and MR220-CL2 (95%). The morphology of the embryogenic callus was confirmed by the SEM (Scanning Electron Microscopy) (presence of extracellular matrix surface network) and later by histological analysis. Finally, MS media supplemented with 0.5 mg/L NAA (Naphthalene Acetic Acid), 2 mg/L kin, and 1 mg/L BAP were selected as the optimum regeneration media treatment while callus desiccated for 48 h was proved to produce more plantlets in MR220 (60%) and MR220-CL2 (73.33%) compared to control treatment (without desiccation). The protocol presented here showed the necessity for the inclusion of partial desiccation as an important step in the tissue culture protocol of Malaysian indica rice genotypes in order to enhance their regeneration potential.

Keywords: 2, 4-Dichlorophenoxyacetic acid; cytokinins; desiccation treatment; embryogenic callus; histology analysis; regeneration; scanning electron microscopy.