Increased Sensitivity of Amoeba-Grown Francisella Species to Disinfectants

Microorganisms. 2020 Aug 20;8(9):1260. doi: 10.3390/microorganisms8091260.

Abstract

Francisella tularensis is a highly infectious, intracellular bacterium and it is the causative agent of tularemia. The bacterium has been isolated from more than 250 species, including protozoa. Previous studies have shown that the growth of Legionella pneumophila within the amoeba results in a dramatic increase in the resistance to disinfectants. Since Francisella persists in the environment for years, this study investigates whether Acanthamoeba castellanii-grown F. novicida exhibits an alteration in the resistance to disinfectants. The disinfectants used are didecyldimethylammonium chloride (DDAC) combined with isopropyl alcohol (D1), benzalkonium chloride combined with DDAC and formic acid (D2), and polyhexamethylene biguanide (PHMB, D3). The effect of disinfectants on the bacterial viability is determined by a colony-forming unit (CFU), by transmission electron microscopy (TEM), by fluorescence microscopy, and the damage of the bacterial membrane. Our data has shown that only a one-log10 loss in bacterial viability is exhibited upon treatment of agar-grown Francisella, while in amoeba-grown Francisella there was a three-log10 difference with D3. The D1 disinfectant sterilized the bacteria within 10 s. The treatment of agar-grown F. novicida with D2 reduces bacterial viability by seven-log10 within 10 s and 15 min, respectively. Surprisingly, the treatment of amoeba-grown F. novicida with D2 results in a total loss of bacterial viability. In conclusion, A. castellanii-grown F. novicida is more susceptible to many disinfectants.

Keywords: Acanthamoeba; Francisella; disinfectant; sensitivity.