Synthesis and Characterization of K and Eu Binary Phosphides

Materials (Basel). 2019 Jan 13;12(2):251. doi: 10.3390/ma12020251.

Abstract

The synthesis, structural characterization, and optical properties of the binary Zintl phases of α-EuP₃, β-EuP₃, EuP₂, and α-K₄P₆ are reported in this study. These crystal structures demonstrate the versatility of P fragments with dimensionality varying from 0D (P₆ rings in α-K₄P₆) to 1D chains (EuP₂) to 2D layers (both EuP₃). EuP₂ is isostructural to previously reported SrP₂ and BaP₂ compounds. The thermal stabilities of the EuP₂ and both EuP₃ phases were determined using differential scanning calorimetry (DSC), with melting temperatures of 1086 K for the diphosphide and 1143 K for the triphosphides. Diffuse reflectance spectroscopy indicated that EuP₂ is an indirect semiconductor with a direct bandgap of 1.12(5) eV and a smaller indirect one, less than 1 eV. Both EuP₃ compounds had bandgaps smaller than 1 eV.

Keywords: Zintl phases; crystal structures; optical properties; polyphosphides; synthesis.