Photo-Fenton-like degradation of bisphenol A by persulfate and solar irradiation

J Environ Manage. 2019 Nov 1:249:109348. doi: 10.1016/j.jenvman.2019.109348. Epub 2019 Aug 17.

Abstract

This work evaluates the feasibility of a solar-enhanced Fenton-like process using S2O82- (PS) and Fe2+ for the elimination of BPA, a model endocrine-disruption compound. This comparative study of BPA removal showed that among the approaches employed, the effectiveness of BPA degradation (10 mg/L) decreased in the order: Solar/PS/Fe2+> Solar/PS > PS/Fe2+> Solar/Fe2+> Solar. The complete degradation of BPA was achieved by Solar/PS/Fe2+ treatment at a [PS]:[BPA] ratio of 20 in less than t30W 5 in deionised water. The high efficiency of the Solar/PS/Fe2+ process revealed a synergistic effect (ϕ = 2.38) between the applied activation agents on the formation of reactive oxygen species (ROS) and subsequent decomposition of BPA. The treatment was accompanied by total organic carbon (TOC) removal (44%) in 45 min. Sequential generation of reactive oxygen species has made Solar/PS/Fe2+ a kinetically effective process for removing BPA without accumulation of toxic intermediates. The reaction rate followed pseudo-first-order kinetics that increased with increasing PS and Fe2+ concentrations. Experimental evidence suggests that exposure to solar irradiation maintains suitable quantities of free Fe2+ in the reaction mixture, even at low catalyst concentrations (the molar ratio of [PS]:[Fe2+] varied from 1:0.01 to 1:0.08). The effects of HCO3-, SO42-, and Cl- were also examined. As expected, HCO3- and SO42- inhibited BPA oxidation. The effect of Cl- on the oxidation efficiency of BPA in Fenton-like systems depends not only on actual Cl- concentrations but it is also highly influenced by molar ratios of Cl- to oxidant and catalyst. Inhibition, which was caused by Cl- in the mM range can be overcome by prolonging the reaction time or increasing the initial Fe2+concentration. Finally, the efficiency of Solar/PS/Fe2+ process was examined in diluted natural surface water and wastewater effluent. On eliminating the buffering action of HCO3-/CO32- ions by lowering the pH value to 4.5, complete BPA degradation was achieved in all real water matrices.

Keywords: Bisphenol A; Persulfate; Solar-enhanced Fenton-like process; Water matrix.

MeSH terms

  • Benzhydryl Compounds*
  • Hydrogen Peroxide
  • Oxidation-Reduction
  • Phenols
  • Sunlight
  • Wastewater
  • Water Pollutants, Chemical*

Substances

  • Benzhydryl Compounds
  • Phenols
  • Waste Water
  • Water Pollutants, Chemical
  • Hydrogen Peroxide
  • bisphenol A