Direct Writing of Cu Patterns on Polydimethylsiloxane Substrates Using Femtosecond Laser Pulse-Induced Reduction of Glyoxylic Acid Copper Complex

Micromachines (Basel). 2021 Apr 27;12(5):493. doi: 10.3390/mi12050493.

Abstract

We investigate the direct writing properties of copper (Cu) patterns on glass and polydimethylsiloxane (PDMS) substrates using femtosecond laser pulse-induced thermochemical reduction of glyoxylic acid copper (GACu) complex. The films of the GACu complex coated on the substrates were irradiated by focused femtosecond laser pulses using a low numerical aperture of 0.45. Under the same conditions, such as laser scanning speed and pulse energy, the width of the line patterns fabricated on PDMS substrates was larger than that on glass substrates. X-ray diffraction peaks of the patterns on glass substrates corresponded to Cu without significant oxidation. By contrast, although Cu patterns were fabricated on PDMS substrates at a scanning speed of 10 mm/s and pulse energy of 0.49 nJ, Cu2O was also generated under overheating conditions at a scanning speed of 1 mm/s and pulse energy of 0.37 nJ. All the patterns exhibited electrical conductivity. The minimum resistivity of the patterns on PDMS substrates is 1.4 × 10-5 Ωm, which is 10 times higher than that on glass substrates, indicating that microcracks formed by thermal shrinkage of the substrates during the laser irradiation increase the resistivity. This direct Cu writing technique on soft materials is useful for fabricating flexible microdevices.

Keywords: copper wire; femtosecond laser pulse-induced reduction; glyoxylic acid copper complex; polydimethylsiloxane.