Fabrication of TiO2 ̶ KH550 ̶ PEG Super-Hydrophilic Coating on Glass Surface without UV/Plasma Treatment for Self-Cleaning and Anti-Fogging Applications

Materials (Basel). 2022 May 4;15(9):3292. doi: 10.3390/ma15093292.

Abstract

In this study, we have developed a self-cleaning transparent coating on a glass substrate by dip coating a TiO2 ̶ KH550 ̶ PEG mixed solution with super-hydrophilicity and good antifogging properties. The fabrication of the thin-film-coated glass is a one-step solution blending method that is performed by depositing only one layer of modified TiO2 nanoparticles at room temperature. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine the structure and morphology of the nanoparticles and the thin-film-coated glass. The surface functional groups were investigated using Fourier-transform infrared spectroscopy (FT-IR), and the optical properties of the glass coating were measured using a UV/Vis spectrometer. The results revealed that the KH-500-modified TiO2 film coating was in an anatase crystalline form. The hydrophilicity of the coated and uncoated glass substrates was observed by measuring their water contact angle (WCA) using a contact angle instrument. The maximum transparency of the coated glass measured in the visible region (380-780 nm) was approximately 70%, and it possessed excellent super-hydrophilic properties (WCA ~0°) at an annealing temperature of 350 °C without further need of UV or plasma treatment. These results demonstrate the super-hydrophilic coated glass surface has potential for use in self-cleaning and anti-fogging applications.

Keywords: TiO2; TiO2 ̶ KH550 ̶ PEG composite film; anti-fogging; self-cleaning; super-hydrophilicity.