Removal of Linear and Branched Alkylphenols with the Combined Use of Polyphenol Oxidase and Chitosan

Polymers (Basel). 2019 May 28;11(6):931. doi: 10.3390/polym11060931.

Abstract

Removal of linear and branched alkylphenols with different alkyl chain lengths or different branchings (normal, secondary, and tertiary), some of which are suspected as endocrine disrupting chemicals, from an aqueous medium were investigated through quinone oxidation by polyphenol oxidase (PPO) and subsequent quinone adsorption on chitosan beads or powders at pH 7.0 and 40 °C. PPO-catalyzed quinone oxidation increased with an increase in alkyl chain length of the alkylphenols used. Although a higher PPO dose was required for quinone oxidation of branched alkylphenols, they were completely or mostly removed by quinone adsorption on chitosan beads or powders. The apparent activity of PPO increased by a decrease in quinone concentration. On the other hand, in the homogeneous systems with solutions of chitosan and PPO at pH 6.0, longer reaction times were required to generate insoluble aggregates, and a small amount of quinone derivatives were left in the solution even under optimum conditions. These results support that the two-step reaction, that is, PPO-catalyzed quinone oxidation and subsequent quinone adsorption on chitosan beads or powders, in the heterogeneous system is a good procedure for removing linear and branched alkylphenols from aqueous medium.

Keywords: alkylphenols; chitosan; polyphenol oxidase; quinone adsorption; quinone oxidation.