Effect of Ultrasound Treatment on Barrier Changes of Polymers before and after Exposure to Food Simulants

Polymers (Basel). 2022 Feb 28;14(5):990. doi: 10.3390/polym14050990.

Abstract

In this study, we investigated the impact of ultrasound treatment on barrier properties of linear low-density polyethylene (LLDPE) and acrylic/poly(vinylidene chloride) polypropylene (PPAcPVDC)-coated pouches intended for food packaging before and after exposure to food simulants. Packaging pouches were filled with two food simulants, namely ethanol (10% (v/v)) and acetic acid (3% (w/v)), in order to simulate food−packaging interaction and possible compound migration from packaging materials. Samples were subjected to an ultrasound water bath treatment for 5 min, 15 min, and 30 min at 60 °C (±2 °C) and with an amplitude of 100% as an equivalent to the heat-treatment conditions combined with an ultrasound effect. Furthermore, the effect of temperature on the polymer barrier (water vapour and oxygen permeability) properties was tested at 20 °C, 40 °C, and 60 °C. Results showed that PPAcPVDC possessed better properties of water vapour permeability and oxygen permeability properties to LLDPE. Statistical analyses showed a significant (p < 0.001) impact of ultrasound treatment on the overall migration value, regardless of the food simulant used.

Keywords: barrier properties; coated polypropylene; food–packaging interaction; linear low-density polyethylene; overall migration; ultrasound.