Comparison of Synthetic Media Designed for Expansion of Adipose-Derived Mesenchymal Stromal Cells

Biomedicines. 2018 May 14;6(2):54. doi: 10.3390/biomedicines6020054.

Abstract

Mesenchymal stromal cells (MSCs) are multipotent cells that can differentiate into various cell types, such as osteoblasts, myocytes, and adipocytes. This characteristic makes the cells a useful tool in developing new therapies for a number of common maladies and diseases. The utilization of animal-derived growth serum, such as fetal bovine serum (FBS), for the expansion of MSCs has traditionally been used for cell culture. However, in clinical applications, animal-derived products present limitations and safety concerns for the recipient, as exposure to animal (xeno-) antigens and infectious agents is possible. Multiple synthetic, xeno-free media have been developed to combat these limitations of animal-derived growth serum and have the potential to be used in ex vivo MSC expansion for clinical use. The goal of this study was to determine if xeno-free media are adequate to significantly and efficiently expand MSCs derived from adipose tissue. MSCs were cultured in both standard FBS-containing as well as xeno-free media. The media were compared for cell yield, viability, and phenotypic expression via flow cytometry and directed differentiation. The xeno-free media that were tested were StemMACS MSC Expansion Media (Miltenyi Biotec, Bergisch Gladbach, Germany), PLTMax Human Platelet Lysate (Sigma-Aldrich, St. Louis, MO, USA), and MesenCult-hPL media (Stemcell Technologies, Vancouver, BC, Canada). All xeno-free media showed promise as a feasible replacement for animal-derived growth serums. The xeno-free media expanded MSCs more quickly than the FBS-containing medium and also showed great similarity in cell viability and phenotypic expression. In fact, each xeno-free media produced a greater viable cell yield than the standard FBS-containing medium.

Keywords: MSC; expansion; regenerative medicine; stem cells; synthetic media; tissue engineering.